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An energy-conserved solitonic cellular automaton 

Zhuhan Jiangi 
Department of Mathematics, University of Manchester Institute ofScience and Technology, 
Po Box 88, Manchester M60 lQD, UK 

Received 28 November 1991 

Abstract. An energy-conserved Soliton cellularautomaton is proposed. It is a generalization 
Of PsTs model and is shown to contain richer solitonic phenomena. A systematic comparison 
of their collision statistics is also given. 

1. Introduction 

Since the observation of the soliton-like behaviour in a new kind of cellular automaton 
(CA) [l] mainly through computer simulation, substantial research work has been 
camed out in this connection. This kind of CA, or rather filter CA, typically consists 
of a collection of bit states a:,  -m< i<m,  Os i sm,  i, ~ E Z ,  the set of integers, by a 
rule 8 of the form 

with radius r > 0 and a(0,. . . , 0) = 0. CA or filter CA recently emerge as non-numerical 
models for nonlinear phenomena [Z, 31. PST [l] introduced a particular CA 

a ' = . .  . O . .  .OaA, .  . a i . .  . a:O.. . O . .  . L<oO aiE{O,1} (2) 
where aA=aL= 1. Its evolution is determined by 

A fast rule theorem (FRT) was developed in [4] to facilitate the calculation of the 
evolution. It was one of the fundamental tools employed to establish stability [4] and 
many other analytic results [S-71. In particular, all simple particle collisions are solitonic 
[6] and there may exist energy loss in the particle evolutions [7]. By simple particle, 
we mean a particle, a local pattern, containing only one non-zero basic string (BS), 

while a BS is ( r +  1) contiguous bits a l . .  . a:+,. Breathers are also found and it is 
observed [7] that all seeds (initial pattern states) f o r a  (3) evolve into periodic particles 
with faster ones on the right. Recently several new CA have been found for multi- 
dimensions [SI, for pure solitons only [Y], as well as for a time-reversible generalization 

In this work, however, we derive a new filter CA by modifying the difference equation 
[7] of P S T ~  model. This new CA has an irreversible evolution yet keeps its energy 
conserved. In fact we shall establish several theorems regarding fast rules, asymptotics 

[lo] Of CA (3). 
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and stability, as well as exhaustive collisions for the evolution. Through theories and 
computer simulations, we find for our new CA: (i) its energy [ l l ]  is always conserved; 
(ii) all evolution are stable and total pattern widths in the evolution are well bounded; 
(iii) all seeds evolve into a collection of periodic particles with faster (rightward defined 
as the positive speed or displacement) ones on the right; (iv) simple particle collisions 
are solitonic (proof in [6] with some modifications); (v) all energy-conserved evolutions, 
in particular all existing solitonic collisions, of PSTE model map to a counterpart in 
n ~ r  flew CA; (vi) a higher prnport.ion ofso!itanic interac!inn.s azvxg mu!:ip!e-ss 
particles exist in the new CA than in PSTS original one. To conclude this section, we 
remark that although the term solitonic is often a paraphrase of many soliton related 
features [12-141 such as ISTS [14,15] and complete integrability [13,14], it is here 
specifically referred to solitonic interactions. 

2. A new filter CA and its FRT 

In comparison with the difference equation [7] for P S ~  CA (3) 

a;+'= 1+1 

-..-- _... Cltar - 1  - r a m +  - a o ~ - h l ~ - n ~ .  "U, , IC_ L L L L ~ L  L A  "ZL.I.3 L. 6 ' C L . L  L C I C I I I " L ~ L L C C _  

( 5 )  

where ai+'=O is as in (4) assumed for n sufficiently far to the left. We note that (5 )  
is essentially of form (1) and therefore a filter CA. Although this new CA was first 
formulated via a complicated set of rules designed to shut down the energy-leaking 
'doors', giving a neater form (9, a much simpler and more symmetric rule for (5) can 
be shown as [16] 

a i + l = [ a ~ + . + , +  , = I  

(0 T,=O 

where the conjugate a? of any bit state x is defined by a? = O if x = 1 and a? = 1 if x = O. 
To formulate an FRT for (9, we call i a prebox position of a' if 

= a !  c +, j = l , .  . . , r (7) 
and call a prebox position a box position if T. # 0. Then we have the following lemma. 

Lemma 1. ( A )  If i is a prebox position of a' and T.(a ' )  = 0, then i +  1 is also a prebox 
position. __ 

(B) If i is a box position of a', then i + r +  1 is a prebox position and a:+' = a:+,+l. 

Proox For the proof of case ( A ) ,  we see that the second and third terms of the RHS 
of (5) for n = i are zero, which gives ai+' = a:,,,,. This combined with (7) implies (7) 

due to the box position i, we thus have from ( 5 )  
a;so holds .when ; is iep:aceb by ;+;, yo case (U"),  we no:ice :ha; 7;(a')fe  
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and hence for j = 1,. ... r 

because the max(.) in ( 5 )  contains both ai+' and ai+,+l which are conjugate to each 
other. Equation (8) thus implies inductively 

r-; 

k = l  

1+1 a .  ' + I - [  2 +, . -  a !  ,+?+I+;+ 1 ( a ~ + k + ; - a ~ ' : - l + k + j ) + ( a f + ~ + l - o i  ) 

because the second and fourth (summation) terms are zero by (7) and the induction 
assumption a:::= ai+-*+,+, ( 1  s k < j ) .  Equation (9) thus completes our proof of case 

0 

We now start with a prebox position, say S (see the diagram below), on the far 
left and proceed to the right by lemma 1 via finding: prebox+next box if any-next 
prebox if any. To be precise, we stay on a left-moving frame of speed of r + 1 and 
start with a trivial prebox position 8 (case I), moving right until we meet a non-trivial 
prebox position a in case I1 where T, # 0 (particularly so if bit b # 0 there). Thus a 
is in fact a box position which implies via lemma 1 that position p ( r +  1 bits away 
on the right from a) is a prehox position and the bit b there is changed to 6 while 
the following r bit's yis are retained intact during the next step of evolution. Since p 
is now also a prebox position, we can carry on rightwards with this procedure by 
regarding p as our new a position until a new p is not a box position. In such a case, 
p becomes a trivial prehox position of S (case I) type which means we can start the 
same process rightwards again. By collecting all such p boxes to the following FRT, 
the evolution of CA (5) can be summarized by theorem I below. 

(B) and hence lemma 1. 

6 IC r l 1 - q  a E r 
t=T: o . . . . . .  o a x ,  . . x ,  m Y l . . Y r Q  

I 1  
t=T+l: 0 . .  ... . o  

I I 1 1 1  
Case-I Case-I1 

7'heorem 1 (FRT). The procedure for obtaining the evolution of CA ( 5 )  is: 
(i) start with any bit position, the left-band side of which has all bits ai = O ;  
(ii) if all right-hand side bits are zero, go to step (iv). Otherwise move to the right 

and place a box on the first encountered non-zero hit; 
( i i i )  if the current box and the following r consecutive bits are all zero, go to step 

(ii). Otherwise put a new box on the ( r +  l)th position on the right of the current box 
and then go to step (ii); 

(iv) conjugate the boxed bits, then move all bits to the left by r + 1 positions. 
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For example, a pattern of * 0 0 ~ 1 0 1 ~ 0 0 0 0 ~ 0 1  lm for r = 3 at f = 0 will evolve 
via the FRT into * ~ O l l ~ O O O O O ~ l l ~  (with its new boxes placed there) at t = 1 
where * represents a fixed spatial reference position. We note that (6) can be shown 
to be equivalent to ( 5 )  by proving [16] it holds for lemma 1 and the above FRT. Also 
all non-zero I - B s  particles are non-trivial periodic particles (cf [4-71) with e (=number 
of its 1s) a multiple of its period, because in e steps of evolution, the original pattern 
will re-emerge with a displacement of ( r + l ) ( t -  1). 

3. Evolution asymptotic and energy conservation 

Before turning to particle collisions, let us recall that a particle is a finite collection 
of B S ~ .  Two particles will be called same if one particle pattern can evolve into the 
other up to a displacement. A pattern state a' is said to have a splifting if, after applying 
FRT ((i)-(iii)), there are r + l  consecutive zero bits on the immediate right of a zero 
box position and on the left or another box. Obviously this splitting condition implies 
that defined in [5,6] for PSTS model, but is stronger. A non-trivial pattern state will 
always consist of exactly N + 1 ( N  3 0) contiguous subpatterns which are split from 
each other; if M of these N splittings disappear in the next step of evolution, we say 
that there are M linking-ups in the next step. Furthermore we shall, without loss of 
generality, from now on study the evolution of ( 5 )  on a moving frame (towards left) 
of a constant speed r + l  unless otherwise stated. On this frame, the second half of 
step (iv) in the FRT is effectively removed. 

Suppose a pattern state a =X.*"=, b, = b , + .  . .+ b,  (such a summation always 
denotes that bk is on the LHS of bk+, for all k and 6,s are disjointed contiguous 
subpatterns of a) splits into bk via the splitting condition such that all bk are non-splitting 
particles. We define the raw width W(a) of a as the minimum number of consecutive 
BSS needed to cover all of its non-zero bits and define the pattern width W(a) = 
X k  W(b,). Hence W(a)<W(a) and the equality holds only if no splitting exists in a, 
in which case W ( a )  is the number of 6% between the first and last boxes placed there 
by the FRT. 

Theorem 2 (stability theorem). ( a )  All evolved pattern widths of any seed are bounded. 
( b )  If a particle a creates M linking-ups and N new splittings during the next 

step, then the width of the pattern increases by at most M-N, i.e. W ( a ' + ' ) S  
W ( a ' ) +  M - N. 

( e )  If there are no splittings throughout the evolution of a particle a, then it evolves 
into a periodic particle. 

( d )  If particle a'  at f = f, consists of two periodic subpatterns b and c with a 
distance d ( t , )  (the bit count from the last box of particle b on the left to first box of 
c )  such that d (  I,) + m. Then the speed of particle e is higher than that of b. 

Cases (a) and ( b )  imply that the evolution is very stable in comparison with the 
stability defined in [4]. Case (c )  implies periodic particles are to some extent 
the natural stable form, while case (d) shows that two periodic particles will have the 
faster one on the right if their distances during the evolution are unbounded. 

Proof: We prove case (c) first. If there are no splittings throughout the evolution of a 
particle a, 2 wim)'i'+')+ 1 steps of evolution would more than exhaust all possible pattern 
configurations if no  pattern were repeated. Thus one of these patterns will reappear 
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and therefore a evolves into a periodic particle. In case ( d ) ,  suppose the speed of b 
is larger than that of c, we let seeds a' evolve from t = f i ,  and denote d, the (evolved) 
pattern of a', just before b and c are to collide in the next step. We choose an infinite 
subsequence {e,) of dj such that all e, are pattern states at different time 1,.  Since W(e,) 
are bounded because b and c are periodic, and the sequence is infinite, there will be 
duplications of the patterns e,. This means a' evolves into a periodic state, contradicting 
d l t  - \ - I ,  I - m .  For !he same i e ~ s o c  the .... rne-rlr -~---" ef C 2nd e c~nfin! be !he ~zme.  We now 
prove case ( a )  via case ( b ) .  Suppose that the evolution of a' into a'+' links up M, 
split particles but incurs N, new splittings, then W ( a ' + ' ) s  W ( a ' ) + M ,  - N , .  Since the 
pattern width W(a') changes only if there are new splittings or linking-ups, and 
furthermore a linking-up together (at the same time or later time) with a splitting 
cannot increase the pattern width, there can be at most W(ao) more linking-ups than 
splittings. Hence W ( a ' ) s  W(ao)+ZLZ'G ( M k - N k ) <  W ( a o ) + W ( a o )  arewellbounded. ' 

In the four steps to be followed for the proof of case ( b ) ,  we use capital bold letter 
to represent a pattem state at time f and the corresponding lowercase bold letter for 
the pattern state at time t + l .  

(i) If particle A =X,"T1 Ai has exactly N splittings separating subpatterns Ai,  if 
furthermore A' is a non-splitting contiguous subpattern of A, then W ( A ' ) S  W ( A ) +  N 

Prooj If N = 0 then applying the FRT to A directly is sufficient. For N 2 1 ,  we apply 
the FRT to both A and A' (see the diagram below), then A; = A ' n  A ,  is a subpattern 
of A ,  and hence W ( A : )  < W ( A , ) .  Notice that there is a position p or  p o  (inside A2) 
which becomes a boxed position p' of A' and the width (from the leftmost box a' of 
A'  through p') s W ( A , )  + 1. Since the pattern from p' rightwards is again a subpattern 
of A,+ .  . . + A N + , .  Inductively we obtain W ( A ' ) S  W ( A L + , ) + Z E ,  ( W ( A : ) + l ) S  
X* W ( A i ) + N =  W ( A ) + N .  

I C s P l l t t l n g + l  80 f3 a .PI l t t l n g  
m r ? - -  A: m e . . *  i * . . N O  .............. OLIJ 7 -...+E ......... iTJ*...*/ZJ*..* 

I- A2+l I+-A3-+I I I+A1-I 

1 
I+- Ai-l+ r+l b i t s  +I IC A; -1 

A' : !g*... 0 .._.0p5J* .......... .B. ... . . . .  p-J* ...................... 
a' 8' 

(ii) If a non-splitting A evolves into a of N splittings, then W ( a ) S  W ( A ) -  N. 

"Y",' h - n f  --- rn. i l r - 1 i - r  ... L&,L." +ha .... --..r ..... d r l + h =  ........ . of 
W ( a ) + N = Z E T '  W ( b , ) + N S W ( a ) ,  where b, are the split subpatterns of a. 

2nd -4 are eq~s! ,  i.e. LV!a) = W!S.), Uezce 

(iii) Ifaparticle A = X z T 1  B, (B, are non-splittingparticles) has exactly M splittings 
separating B, and A evolves into a single non-splitting particle a in the next step, then 
W ( a )  s W ( A ) +  M. 
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Proof For M = 1, without loss of generality, we assume that Bi and 6, are not zero. 
We can see from the FRT that there is a bit position a in B2 (see the diagram below, 
a vertical arrow indicates the position mapping for the evolution) such that a subpattern 
C2 starting from that position to the end of B2 evolves into c2 with, due to (i), 
W(c2)  s W(C2)  G W(B2). Therefore W(b,)+ W(c2) s W ( B , ) +  W(C2) s W ( B , ) +  
W(B2)  and there are exactly ( r +  1) bits separating b, and c2,  and hence (iii) is proved 
in this simplest case. For a general M > 1, we prove it inductively. If we use the FRT 

again to the subpattern A' starting from the position (I to the end of A, i.e. 
C2+B3+,  ... ,+ BMtl,  then the above process can go on to absorb a further particle 
on the R H S  of B2. If by starting at position a, C,, B 3 , .  ... B,,, ( m  S M +  1) together 
form a new non-splitting particle D split from the left-over particles on the RHS, then 
from(i) W ( D ) G  W(B2)+.  . .+ W(Bm)+m-2,andwe thenapplytheabove procedure 
to D+B,+,+BM+,  . In  either case, the absorption of one non-splitting particle Bi adds 
1 to the total width of the new pattern state. This proves (iii). We note that this 
procedure remains valid even if b, ,  c2 etc. in a has splittings. 

SPl1 t t 1 h g  a 

A: m e ?  - B 1 + B o . . o . . . o O t ?  Bz+@o . . . . .  
y- C2-l 1 IC  r + 1  +I 

a: 0- bl +m o . . . o  . . . .  ? m c  c2-m' .............. 

(iv) In general, a pattern state A consists of a combination of L subpattems Ai 
where Ai are combinations of particles which will all link up  at their current splittings 
inside At, totalling Mi linking-ups, and furthermore create N, new splittings. These Ai 
can also be assumed to be split and remain so from each other in the next step of 
evolution. By applying (iii) (or rather the procedure there) to Ai because we can treat 
Ai separately, we have W ( A ) s X f = ,  W(Aj)+Xf=l (Mj-Nj). This proves case ( b )  and 

U 

We now define a compound pattern by adjacently combining all the non-splitting 
subpatterns of a particle A, i.e. their first boxed bit (inclusive) through the last one 
(exclusive), of a'. In other words, a pattern state A of the form 

also completes the proof of theorem 2. 

will define a compound pattern state W(A) by 

. . . . .  . . . . .  ........ mal  8 , m a z  8 2 0  1 a 3 am. . . . .  @m 

From theorem 2(a) we know that the widths of the compound patterns are bounded, 
thus some compound pattern will reappear after sufficiently many steps. Hence for 
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any initial pattern state ( I O ,  as time I", there is a compound state % ( a r )  at f = T 
which will appear infinitely many times for t > T. This lays the foundation for the 
following: 

Theorem 3 (asymptotic theorem). For any seed A, there is a finite collection of particle 
patterns Ai such that as t+w they will reappear as the exact collection, i.e. & A i 2  of 
split subpatterns for infinitely many times. 

The above theorem is a typical scenario of a seed evolving into a collection of 
periodic particles with faster ones on the right. We now prove theorem 3. Let C =  
B , ,  . . . , B,,, be the infinitely recurring compound pattern, induced by A as we discussed 
before, occurring at t = f i  for i ( EZ) 20, where B, are B S ~ .  We call P( C )  = ( B , ,  . . . ,4,) 
(B,.,+,, . . .,Ej2) (. . .) (B,,,,, . . . , B,) a particle grouping of C into a set of particles, if 
a t  t = ti all the BSS inside the same pair of parentheses form one single non-splitting 
particle and different particles thus formed are split from each other. Since there are 
again only a finite number of different such groupings in the same compound pattern 
C, then one particular grouping will reoccur infinitely many times. This proves 
theorem 3. 

Let Di =B,,+,, . . . ,B,,+, ( i =  1, .  . . , n) be the corresponding particles of the above 
grouping, we add a new grouping of 0 , s  by their distances. As f goes to infinity, if 
the distance between Di and Dj+, is not bounded, we insert a pair of group separators 
') (' between them. By adding a pair of parentheses on both sides of P( C), we obtain 
a distance grouping of D,,  . . . ,On into A; =D,,+, . . . D,,*,. Hence if we allow A; in 
theorem 3 to be relaxed to a summation of a finite number of particles, then the 
theorem remains valid with the distances separating the Ai also tending to infinity. 

Notice that if bounded subparticles Ai of A are well split from each other with 
distances between them tending to infinity, then theorem 2(c, d )  applies to each Ai 
separately and hence A evolves into a collection of periodic subparticles with faster 
ones on the right. In fact, our computer simulation manifested this by showing all 
sampled seeds having no restrictions disintegrating into periodic particles lined up in 
the order of their speeds. This kind of phenomenon is well obserued for P S T ~  CA (3) [l, 71. 

Similar to the case of CA (4), we associate (I' with an energy [7, 111 

Obviously if (I' and a'+' both have no splittings, then E ( a ' + ' ) = E ( a ' )  (cf 17: 11j) 
because the bits changed during a one-step evolution are simultaneously conjugate in 
a distance of ( r + l )  which will not alter the expression (10). Also if there are r + l  
consecutivezerosormore between particles b and c, then E ( b + c ) = E ( b ) + E ( c ) . T h u s  
if (I splits into E b b r ,  then E ( o )  = E k E ( b k ) .  Notice that immediately before and after 
a linking-up, there are always at least r +  1 consecutive zeros in between, hence energy 
is preserved during .~ particle evolution. Therefore we have now proved: 

Theorem 4 (energy theorem). The energy given by (10) is conserved for CA ( 5 ) .  

We note that a BS = (IO.. . 0) is a 'zero energy header' which can be put on the 
very front of a non-zero particle without changing its energy. This is also the reason 
for non-inver?ihi!ify of the  particle evolution. 
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4. Particle collision 

For particle collisions, we (as in [ 13) only consider proper interactions, i.e. the particles 
are placed sufficiently far apart before interaction. In [l]  a so-called determinant is 
used for PSTS CA to calculate the upper bound of the number of proper interactions. 
Here, however, we shall give an algorithm for all different proper interactions, which 
makes it tractable to simulate collisions exhaustively within any given range, instead 
of choosing random seeds as in [I], Let x be a periodic particle and O(x) be the state 
orbit of the evolution of x, we choose lexically the largest state X of O(x) as the 
canonical form which represents the particle. 

Theorem 5 (collision theorem). Suppose X and Y are two canonical particles (X on 
the LHS of Y), let p ,  and p 2 .  d ,  and d,, uI  and U, be the corresponding periods, 
displacements and speeds respectively with U, = d , /  p ,  > U, = d,/ p 2 ,  and let q = ( p , ,  
p 2 )  be the greatest common factor of p ,  and p 2 ,  i.e. p,  = qq, and q1 and q2 are prime 
to each other, then there are exactly P = p 2 d l  - p , d ,  different proper interactions between 
the two particles, explicitly given by 

,?+I 
u J ( X )  4 Y O S j < q  O s  m < M = q2d,  - q 2 d ,  ( 1 1 )  

where u ( x )  means the next state of x in O(x), m + l o  represents the distance (i.e. bit 
count) of the last box of d ( x )  to the first box of Y and lo> d ,+  r + 1 is any fixed integer. 

We note that two interactions are considered the same if, before reaching collision, 
one pair of particles will evolve into the exact state of the other u p  to a global spatial 
displacement. Also the definition of canonical form is not important and ( 1 1 )  is indeed 
valid for any states X E O(x) and Y E  O ( y ) .  Moreover the above results remain the 
same whether or not the displacement and the speed are with respect to a moving 
frame as long as they are in the same frame. In fact, if we are on another moving 
frame with a constant speed e, then the new speeds are U/ = d i / p i + c -  d j / p ,  and it is 
obvious A and M in ( 1 1 )  are invariant with the new displacement d i .  We now prove 
theorem 5. Notice that any pair of periodic particles x and y posed for a proper 
collision can always evolve into or from 

m + I" 
x' - Y X ' E  O(x) O s m < M  (12) 

because after qq1q2 steps (thus travelling M positions) from (12) pattern x' and Y will 
reappear. Hence all interactions come from ( 1 2 ) ,  totalling p , M  collisions. However 
as x' approaches Y via evolution within ( 1 2 )  from m = M - 1,  Y will appear exactly 
q ,  times via pairing uipz(x')- Y, O G  i < 4 , .  This therefore implies there are A ( = p , M / q , )  
proper interactions. We note that our pairing ( 1 1 )  also applies to PSTS CA (3) where 
A is precisely the determinant proposed in [l]. 

We now show that the A collisions paired by ( 1 1 )  are all different and thus exhaust 
all the proper interactions between particles X and Y. First of all, we notice that in 
pairing x - Y, O s  m < M, there are no duplications. Because otherwise from the 
above there would be an i such that l i l <  q ,  and x =  u"~(x), i.e. ip,-O mod(p,) which 
contradicts ( q l ,  q 2 ) =  1 .  No duplications can come from ( 1 1 )  for O < j < q  either. In 

!"+lo 

"+I<, !"+I 
fact, if G X (  \,-, Y >  - . y (e< < q )  acd nJ(dy) o_ y (Q<; < 4) were pssccti.!!y 
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the same, i.e. one evolves into the other, then we would have u ’ ( X ) = ( U ~ ( X ) ) ” ’ ~ =  
u * ” ~ ( X ) .  Thus j =  a p ,  + p p 2 <  q for some a and p E Z which contradicts the fact that 
the greatest common factor q = ( p I ,  p z )  is the smallest positive integers satisfying this 
relation for all a and p.  Hence the proof is completed. 

We recall that all non-zero 1-ss strings, in contrast to P S T ~  model, are non-trivial 
simple particles under (5). Nevertheless their interactions are still solitonic and can 
be proved rigorously by closely following the proof of Fokas et a/ [6] for CA (4) and 
by keeping in mind that our splitting condition coincides with that in [6] when only 
I-BS particles are involved. In fact a very interesting analytical result can he imported 
directly from that of [6,7] with only minor modifications. 

Suppose a periodic particle does not split at any time and is given at t = 0 by 
OA’A’. . . ALO with /,, I , ,  . . . , 11, the number of 1s in the BSS: A’, A 1 0 A 2 ,  A 2 0  
A’, . . . , AL-’OAL, A‘, where 0 denotes [7] the exclusive or operation, then the particle 
pattern will reappear in P = l o+ .  . . + 1, steps of evolution. Furthermore, the displace- 
ment at r = i on the moving frame (to the left with speed = r +  1) is given by D, = d,+, - d, 
where 

d , = ( k ( r + l ) + d :  i = l o + . . . + / k - l + j  I < j < l k  O < k < L  / L , = O  

andd:=j th  1 ofthe B s A ~ O A ‘ + ’  ( k = O ,  ..., L),withAn=ALf’-O. 

mL(r+ 1) + d, i = m(l,,+. . . + /,) + j 1 s j < I , + .  . .+ lL m = 1,2,  . . . 

5. Model comparison and simulation statistics 

h e  of the importani feaiures of our CA (5) is ihai any seed of soiitonic intkraction 
under P S T ~  CA (3) will also be a seed of solitonic interaction under ( 5 )  and the evolutions 
from the seed differ only by a constant moving frame. However, the opposite is not 
true as we shall see from figures 1-4. Hence CA (5)  contains richer solitonic phenomena. 
In fact, suppose we place boxes to a seed by our FRT and that for (4) [4], if they 
coincide then no energy will be lost during the next step of evolution. Otherwise there 
will be a BS = 1 0 .  , . 0 at the end of at least one particle, which means it will lose energy 
[7] under (4). Obviously any solitonic collision under PSTS CA will not lose energy and 
therefore will also be preserved under our new CA (5) up to a moving frame. Other 
features such as breathers and the so-called premature splittings for (4) are well 
observed for (5) too [16]. Unlike other models [3], however, turbulence does not occur 

We ”ow estab!ish reme simu!ition statistics 2nd !heir cemparisen cnder (4) and 
( 5 ) .  We note that two particles of the same speed are excluded from our proper 
interactions. But first of all, let us show some of the solitonic interactions under ( 5 )  
that would deviate under (4). All figures depict evolution on a left moving frame. 
Figure 1 shows a 1-ss  particle colliding with a 2-BS and a 3-Bs particle at the same 
time and re-emerging after interaction. Notice that no splitting occurs at t = 8 thus all 
three particles are in full collision. Also two of the three particles would evolve into 
zero before collision under CA (4). In figure 2, two simple particles are posed to fire 
at  a 3-BS particle at the same time and again reappear later on. In this case, all three 
particles are also non-trivial periodic particle seeds under (4) but will lose energy 
during the collision and thus be unable to recover their original patterns. In our third 
example, we present an occasional feature shared by both (4) and, less often, (9, 

for CA (5). 
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Figure 1. Solitonic collision for equation (5)  with left-maving frame speed= r = 3 .  Two 
particle would nullify under equation (4). 
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Figure 2. Solitonic collision for equalion ( 5 )  with left-moving frame speed : r 7 3. Collision 
would be non-solitonic under equation (4). 

which so far seems to have escaped general observation: during a collision of two 
particles, one particle may reappear while the other changes into new form with equal 
or less energy. It is largely due to the exhaustiveness of theorem 5 that such rare cases 
(and phaseshift characteristics to be explained later on) do not slip away unnoticed. 
Figure 3 shows such a feature for (4) which under (5) will still be solitonic with 
11001100100000000111 at f =Oevolvingintopattern 1110000000000110011001 at t =46. 
Finally in table 1, we give the distribution of all the different types of interactions for 
CA (5). as well as for CA (4) for comparison. The simulation program is written in C 
for efficiency, but an exhaustive checking for higher range would still come up against 
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Figure 3. Energy 1 0 s  for equation (4) with r = 4  and left-moving frame speed=3. One 
particle reappears after interaction. Collision would be solitonic under equation ( 5 ) .  

the computer (SUN workstation) speed limitation. We note that table 1 shows a higher 
percentage of solitonic collisions in CA (5) than in CA (4). No collisions of 1-ss versus 
1-ss are reported there because they are all solitonic. Also no proper interactions exist 
for 2-ss versus 2-ss under CA (4) with r = 2 because all those 2-BS particles have the 
same speed. 

It is noticed [ l ]  via simulations that in a solitonic collision under CA (3) the fast 
(rightwards) particle cannot be shifted to the left, and the slow particle cannot be 
shifted to the right. This kind of observation is typical of computerization taking 
initiatives when theory fails to proceed. Our more extensive simulations show, however, 

0.04% of total collisions sampled in table 1 )  for our new CA (5). In other words, the 
fast particle may be dragged backward and the slow one pushed forward. Figure 4 
depicts such an example where two collisions of the same pair of particles with different 
initial distances result in different signs of phaseshifts. In general, the phaseshifts of 
a solitonic (two particle) collision depend on the exact pattern configuration of each 
particle in the initial state and the distance between them at the time. Nevertheless 
we do have a new interesting empirical property: if two particles reappear travelling 
apart after their interaction, the exact pattern of each particle in the seed before 
collision will also simultaneously reappear later on (see figures 1 and 2). That is, 
the exact patterns of each particle before interaction ( t  = 0) can and will reappear at the 
same time. 

!h2! the zbovc property, wh!!p trxc for C.4 (3), may fai! in some rare cases (!csn than 
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Table 1. Collision statistics. 

t n  0 

t= 10 

t. 20 

t= so 

t. 40 

t= 48 

2 M  31 1 
0 0 0 
N 0 0 
C 1 2 
T 38 3 
% 97 33 

3 M 458 110 
0 4 I 
N 10 24 
C 4 14 
T 416 149 
% 96 14 

4 M 4512 2045 
0 22 28 
N 120 295 
C 12 52 
T 4666 2420 
% 97 85 

29 
0 
3 
4 

36 
81 

1172 
5 

266 
15 

1458 
80 

30310 
35 

4549 
1034 

35928 
84 

168 
2 

78 
94 

342 
49 

10499 
30 

4525 
1572 

16626 
63 

Rad = radius, M = (mirror) reverse match, 0 =one particle matched only, C = seed collapses 
into a periodic particle, N = no panicles in seed reappear after collision, T = total collision 
number, %=percentage of solitonic interactions against the total ones. 

Figure 4. Different phaseshift directions far equation ( 5 )  with leff-moving frame speed = r = 
4 for the same pair of particles depending on the initial separating distances. 



An energy-conserved solironic cellular automaton 3381 

References 

[l] Park J K, Steiglitz K and ?bunton W P 1986 Physic0 19D 423 
[2] Fanner D, Toffoli T and Wolfram S 1984 Cellulor Automata (Amsterdam: North-Holland) 
I31 Aizawa Y, Nishikawa I and Kaneko K 1990 Physico 45D 307 
[4] Papatheodorou T S, Ablowitz M J and Saridakis Y G 1988 Stud. Appl. Moth. 19 173 
[SI Papatheodorou T S and Fokar A S 1989 Stud. Appl. Moth. SO 165 
[61 Fokas A S, Papadopoulou E P, Saridakis Y G a n d  Ablowitz M J 1989 Stud. Appl. Moth. 81 153 
[7] Fokas A S, Papadopoulou E P and Saridakis Y G 1990 Physic0 41D 297 
[8] Fokas A S ,  Papadopaulou E and Saridakis Y 1990 Phys. Left. 147A 369 
191 Takahashi D and Satsuma J 1990 J. Phys. Soc. Japan 59 3514 
1101 Ablowitz M, Keisera J and Takhtajan L 1991 Phys. Rev. A 44 6909 
:11] Golberg C H 1988 Complex Systems 2 91 
:I21 Fordy A P (ed) 1990 Salifon Theory A Survey of Results (Manchester: Manchester University Press) 
:I31 Jiang Z and Raueh-Wojciechowski S 1991 J. Math. Phys. 32 1720 

:I51 Jiang Z 1989 In". mob. 5 349; I990 Phys. Lett. 148A 57 
:16] Jiang 2 and Bullough R K 1992 Pmc. NEEDS-91 (Singapore: World Scientific) 

- ? * I  **I .̂.I i . _ L "  r . . * A ~ ~ " . . ~ " , o Q ,  Cd2,"""""A.L" r*..̂ rm~"",,"**"7.n"rm.- , D w a A d " &  D A . < , d M I  
.-J i l Y l " " l l l 1 . 1 1  ".YIL&Y. .& ..'YC"rrr",.r....d ..",.~,",,.. \..ll. "l.rl..",. ...-......, 


